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LETTER TO THE EDITOR 

Order-disorder displacive crossover in a structural phase 
transition model? 

George A Baker Jr and A R Bishop 
Theoretical Division, Los Alamos National Laboratory, University of California, Los 
Alamos, NM 87545, USA 

Received 16 November 1981 

Abhrcct. We are able to write the partition function of the double-Gaussian model which 
is representative of the Ad4 class (Hamiltonians with unbounded doubly degenerate local 
potentials) exactly as the product of the partition function of a Gaussian model and the 
partition function of a spin-f Ising model. On the basis of this result we are able to 
determine the nature and location of the critical points of this model. It also follows that 
the block spin renormalisation group flows in the entire high-temperature region converge 
to a Gaussian model fixed point. 

There have been several discussions (Beale et a1 1981, Bruce 1980, Bruce and 
Schneider 1977, Bruce et a1 1979, Schneider and Stoll 1980) of A44 (double-well) 
models appropriate to structural phase transitions which have emphasised so-called 
displacive-order-disorder crossover. Generically, this crossover is proposed to occur 
at temperatures -T,(8) > T,(B), where T, is an (Ising) critical temperature and 8 a 
parameter measuring the ‘displaciveness’ of the A44 model (see below). At T > T,, 
large-amplitude phonon-like modes (often characterised as ‘displacive’) are the 
dominant excitations, whereas for T < T, it is supposed that ordered domains (clusters) 
(and domain walls) dominate (characteristic of orderdisorder models), and that the 
transition at Tc(8) is continuous and belongs to the Ising universality class for all 8. 
Regimes of precursive orderdisorder behaviour appear sufficiently near T, no matter 
how displacive the bare Hamiltonians. This behaviour is consistent with dynamic 
structure factor observations in molecular dynamics simulations$ (Bruce et a1 1979, 
Schneider and Stoll 1980). For T=s Tx(8)  an additional central (i.e. low-frequency) 
component in the structure factor is associated with cluster (domain) dynamics. This 
dynamic crossover is certainly not a sharp transition, but specific criteria for Tx(6) 
from static properties have been proposed (Beale et a1 1981, Bishop 1978a, by Bruce 
1980, Bruce and Schneider 1977, Bruce et a1 1979, Schneider and Stoll 1980), which 
in dimensions d = 1,2 are in fair agreement with the more fundamental dynamic 
diagnostics (general d). In particular, in d = 1,2, renormalisation group (RG) methods 
have been suggested. These have ranged from approximate momentum space RG 
studies of distribution functions for block coordinates, to approximate real space 

t Work performed under the auspices of the US DOE. 
$There is also qualitative agreement with some experiments (see Bruce 1980); however, an additional 
lower crossover temperature is also characteristic (see Schneider and Stoll 1980), which can also be 
anticipated from the approximate criterion we suggest here (see text). 

0305-4470/82/040201+ 06$02.00 @ 1982 The Institute of Physics L201 



L202 Letter to the Editor 

decimation RG approaches. In the latter case, a criterion based on non-critical RG flow 
was suggested (Beale et a1 1981) for TI(@):  namely, that T,(8) separates between 
flows to Ising and Gaussian (sometimes referred to as 'high-symmetry') high-T fixed 
points. It is important to emphasise that (i) the above results should apply generally 
to all models of the class (i.e. Hamiltonians with unbounded doubly degenerate 
local potentials), (ii) discontinuities are not expected at T, (e) in any thermodynamic 
(or dynamic) properties, and (iii) existing static criteria in d > 2 are very indecisive, 

In this Letter we present a model belonging to, and entirely representative of, the 
class whose thermodynamic properties we have been able to decompose naturally 

into Ising-like and Gaussian model contributions (all d). These subsystems are 
automatically characterised by domain-wall and (monotonic well) quasi-harmonic 
excitations respectively. We feel that a transparent example has been lacking in this 
general area. The present model will allow the investigation of criteria for Tc(f3) and 
for the quasi-crossover at ?",(e) quite precisely. It will be a valuable test of various 
RG techniques and in addition allow a much clearer analysis of d-dependence. The 
model can be posed as a conventional spin model with double-Gaussian spin weight 
function. This spin model is of interest in its own right because of recent attempts to 
study its critical properties with high-7' series (Rehr and Nickel 1981, Fisher 1981). 
In the lattice dynamics context we typically consider a bare Hamiltonian of the form 
(Bruce 1980, Beale et a1 1981) 

H{X.} = V(Xi )  +;c (Xi 
i = l  { U )  

where N is the number of lattice sites, the sum over {ij} is over nearest-neighbour 
sites, and V is a (fixed) local potential with two degenerate minima characterised by 
well width, depth and location. For instance, the prototype Aq54 model itself has 

(2) 

where A and B are usually taken to be 7'-independent. Since various parametrisations 
have been adopted in the literature, we will first present our model and its decomposi- 
tion in the general form of a spin model with spin weight distribution 

V ( X )  = -+Ax2 + iBx4, * 

p ( x )  =t(2.rrw 2 ) - 1 / 2  {exp[-(x -u)2/2w2]+exp[-(x + v ) ~ / ~ w ~ ] }  

= (27rw 2 ) - 1 / 2  exp(-u2/2w2) exp(-x2/2w2) cosh(xu/w2). 

For simplicity (and the class (l)), we consider here nearest-neighbour isotropic 
spin-type coupling. (Extension to anisotropic, long-range, etc, interactions does not 
affect our decomposition.) We use the simple result cosh a = $ Z p = * l  ea@ to write the 
partition function 2 following from (3) and 

Z = [ $ ( 2 ~ w ~ ) - ' / ~  exp(-v2/2~2)]N fi dxr 
{ p , = * l )  --CO i = l  

>I x: t' 
xexp U C x i x i + s - t x : - - + + x i ~ i + H x i  . [ i ( IS) 2w w 

Here (8) is (half) the nearest-neighbour set, U gives the spin coupling strength, the 
t-term is introduced for generality (cf (l)), and we have included a magnetic field 
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term. Introducing Fourier transform variables (4 restricted to the first Brillouin zone) 
(see e.g. Baker 1962) 

2, = N - ~ / ~  exp(2~iq j ) x I ,  v, = N-'I2 exp(2riq ]),U,, (6) 

and re-expressing, we find after some algebra that all 2,-dependence can be removed 
by integration with the final result 

I I 

2 = [$ exp(-v2/2w2)]N2GZI, (7a) 

Hv 
Y 1 + 2 w ' ( t - d ~ ) ? ~ ' ] *  

In writing (7) we have specialised (for simplicity only) to the hypersimple cubic family. 
Equation (7) is our central result. For we see that (i) ZC is simply the Gaussian model 
(Berlin and Kac 1952) partition function with magnetic field=Hw and reduced 
temperature pJ = uw2/( l  + 2w2t), and (ii) 21 is an Ising model (Domb 1974) partition 
function with the simple modification that J ( i  -1) (the pipj interaction coefficient) is 
long-ranged but decays exponentially with distance according to a familiar nearest- 
neighbour lattice Green function (see (7c)). Specifically, we can show that (7c) will 
arise from 

(8) 
(for latel: purposes we have specialised to t = ud). The decay is a pure exponential 
at all non-zero separations for d = 1 and is a soluble model (Baker 1961). On the 
basis of (7) we can expect, in general, two critical points for fixed w :  first a Gaussian 
critical point, TO from 2dw2u = 1 + 2w2t, and second an king-class transition at Tc(w). 
We discuss Tc(w) in more detail below, but remark here that TJw)  > TG(w), for all 
w except in the limit v + 0 where they coincide. 

Considering (l), we see that, in effect, the spin weight distribution acquires a 
T-dependence, which has some interesting consequences. Our model corresponds to 

exp[ - li - j l (  U w 2)-1/4] ~ ( i  -1) a: (v2/4W2)(UWZ>-(d+l)/* * -(d-1)/2 l i  -11 

pV(x)  = $(x/w)2-ln cosh(xu/w2), (9) 

(1 + &I4, u = K ,  v = (e/i + t = dK. (10) 

which should be compared with (2). For illustration we consider the parametrisation 
= K-'f4 

Note that displacive and order-disorder limits now correspond to 8 = 0  and 00, 
respectively. 

Observe first that this parametrisation maps the previous Gaussian line of critical 
points to the line K = 00. To examine the Ising critical points &(e) we compute the 
total interaction strength per spin in ZI, because experience has shown that the 
ferromagnetic Ising model critical point is determined by a critical value of the total 
strength, which value is only weakly dependent on lattice structure, etc (Domb 1974, 
Bricmont and Fontaine 1981). From the terms in (7c) and from (10) this result is 
easily found' as S = &(K/l+ @)'I2 - So, where SO is a self-interaction term. From (7c) 
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with i = j ,  

We have studied So in detail. It does not alter S except for d = 1 where SO = kS (K -+ 00) 

and in the Ising limit 8 + CCI (all d )  where So = S to leading order in 8. In the last case 
we find a nearest-neighbour Ising model explicitly with So = S - dK + 0(0-”2), so that 
the Ising result for K, is exactly recovered with deviation ae-’/2 for large 6. For the 
Ising limit the critical strength S is a constant depending only on lattice and dimension- 
ality: S(d = 1) = 00; S(square) = (1.13460)-’; S(cubic) = (1.50360)-’; S(mean field) = 
5. As 6 is varied, we expect the critical strength will vary only weakly in the king 
mean-field range, since the king interaction decays exponentially for large separations. 
Our conclusions are therefore 
d = l :  

d = 2 :  1 s ezKc(e)s 3.11, 6 + 0 ,  K -+ K,(Ising) + o(e-”2), e + 00, (12) 

d = 3 :  

We have indicated K J 8 )  in figure 1. The picture for Kc(6)  is qualitatively consistent 
with the RG results of Beale et a1 (1981), and the main differences arise from our 
choice of parametrisation. 

1 

Kc(6) = 00, for all 8, 

1 s e2Kc(e) s 1.77, e -+ 0 ,  K -+ K,(Ising) + o(e-’/*), e + 00. 

Figure 1. Features of the a = 1/(1+ e), y = 1/(1+ K) plane. (a) The y = 0 line is a line 
of Gaussian critical points; (b) region is a modified low-temperature (two-phase) Ising 
region; (c) line of Ising-like critical points; (d) this whole region (including the point a = 0, 
y = 1) flows under the block-spin RG to the point a = 1, y = 1 for infinite block size; (e) 
pure Gaussian model on the line a = 1;  (f) pure king model on the line a = 0; (g) the 
broken line indicates the line of equal strength Gaussian and Ising interactions. 

Considering the suggested quasi-crossover from Gaussian to order-disorder fluctu- 
ations, we observe immediately from (7) that this general picture is also supported 
qualitatively. For small 6 we see that the Gaussian contribution dominates the Ising 
one, except very near the critical line Kc(0) where king behaviour (albeit with 
long-range interactions) necessarily dominates. By contrast, for large 8 we see that 
the Gaussian contributions become very small and the Ising behaviour is dominant for 
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all K except for large enough K-’ .  The Ising regime can also be understood from 
the interaction range of the generalised Ising model in (7c). The Ising interactions, 
as expected, become short-ranged in the order-disorder limit 8 -* CO, but increasingly 
long-ranged as the displaciveness increases (8 decreases). Critical exponents are 
Ising-like for all 8 > 0. For 8 = 0 the model passes continuously to a pure Gaussian 
form. (The point e = o = K-’ requires special treatment.) 

At this point it is appropriate to recall a general theorem (Baker and Krinsky 
1977, Newman 1980) which does not appear to have been fully appreciated in this 
context. 

Theorem. Any translationally invariant ferromagnetic king model (that is to say, every 
single-spin distribution is identical and has a finite variance, and the spinspin interac- 
tion energy, - J ( f , j ) ,  between the spins at sites f and j is of the form J ( i - j ) > O )  at 
a temperature at which the magnetic susceptibility, x, is finite has the property that 
the limit of the distribution of the block-spin variables Sk = (XyZA .Xnk+-r)n-d/2 converges 
to independent Gaussian random variables of variance x. 

The consequence of this theorem is that for all 0 ss 8 d 00 and 0 s K < Kc(8), the 
block-spin, RG fixed-point Hamiltonian for both Ad4 models and the present double- 
Gaussian model, among others, is just the non-interacting Gaussian model. The 
theorem is in conflict with the results of Beale et a1 (1981) based on decimation RG 
instead of (real space) block-spin RG, which suggests flow to ‘Ising high-T fixed points’ 
for sufficiently order-disorder bare Hamiltonians. This contradiction of the theorem 
may be an artifact of decimation and/or their separation of first- and second-neighbour 
interactions under iteration. However, we emphasise that global flows rather than 
local flows are addressed by the above theorem. 

Since there are no thermodynamic discontinuities associated with the suggested 
non-critical, displacive-order-disorder crossover at K, (e),  an uniimbiguous criterion 
is difficult to define. The criterion based on RG flow (Beale et a1 1981) is evidently 
a balance of strengths of competing local flow directions. In the same spirit we can 
compare the total interaction strengths per spin, SG and SI, in the cleanly divided 
Gaussian and Ising components of (7). With parametrisation (lo), SG is easily identified 
as d(K/l+ 8)’12[1 +2d(K/1+ 8)”2]”, and from our earlier discussion SI =$9K’” for 
small 8. Equating SG with SI suggests Kx(8)= 8-2<Kc(8),  and thus Kc(8)/K,(8)= 
constant (d  > 1) in this limit. As for Kc(@, there is again qualitative agreement with 
RG results; this agreement becomes very striking if a more closely analogous parametri- 
sation to their model is chosen. Further work, which will be described in detail 
elsewhere, shows clearly the nature of the relationship of that RG criterion to the 
equal strength criterion. The natural decomposition (7) is being used to study compet- 
ing contributions in a variety of thermodynamic properties. These may provide clearer 
diagnostics for Kx(8)  and show the weaker signals anticipated in d > 2, than in d = 2. 
Similarly, a critical analysis of RG techniques and of high-T series analysis can be 
given based on this separable model. 
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